1,399 research outputs found

    Does Luttinger liquid behaviour survive in an atomic wire on a surface?

    Full text link
    We form a highly simplified model of an atomic wire on a surface by the coupling of two one-dimensional chains, one with electron-electron interactions to represent the wire and and one with no electron-electron interactions to represent the surface. We use exact diagonalization techniques to calculate the eigenstates and response functions of our model, in order to determine both the nature of the coupling and to what extent the coupling affects the Luttinger liquid properties we would expect in a purely one-dimensional system. We find that while there are indeed Luttinger liquid indicators present, some residual Fermi liquid characteristics remain.Comment: 14 pages, 7 figures. Submitted to J Phys

    Features of spin-charge separation in the equilibrium conductance through finite rings

    Get PDF
    We calculate the conductance through rings with few sites LL described by the t−Jt-J model, threaded by a magnetic flux Φ\Phi and weakly coupled to conducting leads at two arbitrary sites. The model can describe a circular array of quantum dots with large charging energy UU in comparison with the nearest-neighbor hopping tt. We determine analytically the particular values of Φ\Phi for which a depression of the transmittance is expected as a consequence of spin-charge separation. We show numerically that the equilibrium conductance at zero temperature is depressed at those particular values of Φ\Phi for most systems, in particular at half filling, which might be easier to realize experimentally.Comment: 8 pages, 7 figure

    Renormalization-group study of a magnetic impurity in a Luttinger liquid

    Full text link
    A generalized Anderson model for a magnetic impurity in an interacting one-dimensional electron gas is studied via a mapping onto a classical Coulomb gas. For weak potential scattering, the local-moment parameter regime expands as repulsive bulk interactions become stronger, but the Kondo scale for the quenching of the impurity moment varies nonmonotonically. There also exist two regimes dominated by backward potential scattering: one in which the impurity is nonmagnetic, and another in which an unquenched local moment survives down to very low temperatures.Comment: REVTeX, 4 pages, 3 epsf-embedded EPS figure

    Vacuum properties of a Non-Local Thirring-Like Model

    Get PDF
    We use path-integral methods to analyze the vacuum properties of a recently proposed extension of the Thirring model in which the interaction between fermionic currents is non-local. We calculate the exact ground state wave functional of the model for any bilocal potential, and also study its long-distance behavior. We show that the ground state wave functional has a general factored Jastrow form. We also find that it posess an interesting symmetry involving the interchange of density-density and current-current interactions.Comment: 25 pages, latex, no figure

    A strong-coupling expansion for the Hubbard model

    Full text link
    We reconsider the strong-coupling expansion for the Hubbard model recently introduced by Sarker and Pairault {\it et al.} By introducing slave particles that act as projection operators onto the empty, singly occupied and doubly occupied atomic states, the perturbation theory around the atomic limit distinguishes between processes that do conserve or do not conserve the total number of doubly occupied sites. This allows for a systematic t/Ut/U expansion that does not break down at low temperature (tt being the intersite hopping amplitude and UU the local Coulomb repulsion). The fermionic field becomes a two-component field, which reflects the presence of the two Hubbard bands. The single-particle propagator is naturally expressed as a function of a 2×22 \times 2 matrix self-energy. Furthermore, by introducing a time- and space-fluctuating spin-quantization axis in the functional integral, we can expand around a ``non-degenerate'' ground-state where each singly occupied site has a well defined spin direction (which may fluctuate in time). This formalism is used to derive the effective action of charge carriers in the lower Hubbard band to first order in t/Ut/U. We recover the action of the t-J model in the spin-hole coherent-state path integral. We also compare our results with those previously obtained by studying fluctuations around the large-UU Hartree-Fock saddle point.Comment: 20 pages RevTex, 3 figure

    Phase diagram of an asymmetric spin ladder

    Full text link
    We investigate an asymmetric zig-zag spin ladder with different exchange integrals on both legs using bosonization and renormalization group. When the leg exchange integrals and frustration both are sufficiently small, renormalization group analysis shows that the Heisenberg critical point flows to an intermediate-coupling fixed point with gapless excitations and a vanishing spin velocity. When they are large, a spin gap opens and a dimer liquid is realized. Here, we find a continuous manifold of Hamiltonians with dimer product ground states, interpolating between the Majumdar-Ghosh and sawtooth spin-chain model.Comment: 4 pages, 2 EPS figures, to be published in PR

    Magnetoconductance oscillations in quasiballistic multimode nanowires

    Full text link
    We calculate the conductance of quasi-one-dimensional nanowires with electronic states confined to a surface charge layer, in the presence of a uniform magnetic field. Two-terminal magnetoconductance (MC) between two leads deposited on the nanowire via tunnel barriers is dominated by density-of-states (DOS) singularities, when the leads are well apart. There is also a mesoscopic correction due to a higher-order coherent tunneling between the leads for small lead separation. The corresponding MC structure depends on the interference between electron propagation via different channels connecting the leads, which in the simplest case, for the magnetic field along the wire axis, can be crudely characterized by relative winding numbers of paths enclosing the magnetic flux. In general, the MC oscillations are aperiodic, due to the Zeeman splitting, field misalignment with the wire axis, and a finite extent of electron distribution across the wire cross section, and are affected by spin-orbit coupling. The quantum-interference MC traces contain a wealth of information about the electronic structure of multichannel wires, which would be complimentary to the DOS measurements. We propose a four-terminal configuration to enhance the relative contribution of the higher-order tunneling processes and apply our results to realistic InAs nanowires carrying several quantum channels in the surface charge-accumulation layer.Comment: 11 pages, 8 figure

    Mechanism of CDW-SDW Transition in One Dimension

    Full text link
    The phase transition between charge- and spin-density-wave (CDW, SDW) phases is studied in the one-dimensional extended Hubbard model at half-filling. We discuss whether the transition can be described by the Gaussian and the spin-gap transitions under charge-spin separation, or by a direct CDW-SDW transition. We determine these phase boundaries by level crossings of excitation spectra which are identified according to discrete symmetries of wave functions. We conclude that the Gaussian and the spin-gap transitions take place separately from weak- to intermediate-coupling region. This means that the third phase exists between the CDW and the SDW states. Our results are also consistent with those of the strong-coupling perturbative expansion and of the direct evaluation of order parameters.Comment: 5 pages(REVTeX), 5 figures(EPS), 1 table, also available from http://wwwsoc.nacsis.ac.jp/jps/jpsj/1999/p68a/p68a42/p68a42h/p68a42h.htm

    Lattice Twisting Operators and Vertex Operators in Sine-Gordon Theory in One Dimension

    Full text link
    In one dimension, the exponential position operators introduced in a theory of polarization are identified with the twisting operators appearing in the Lieb-Schultz-Mattis argument, and their finite-size expectation values zLz_L measure the overlap between the unique ground state and an excited state. Insulators are characterized by z∞≠0z_{\infty}\neq 0. We identify zLz_L with ground-state expectation values of vertex operators in the sine-Gordon model. This allows an accurate detection of quantum phase transitions in the universality classes of the Gaussian model. We apply this theory to the half-filled extended Hubbard model and obtain agreement with the level-crossing approach.Comment: 4 pages, 3 figure
    • …
    corecore